

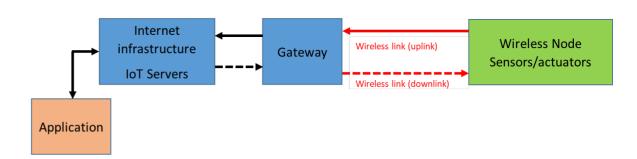
IoT Everywhere? Harvesting energy to power future IoT nodes

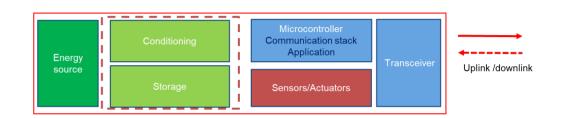
Marcel Meli: ZHAW, Institute of Embedded Systems marcel.meli@zhaw.ch
Wireless Tech Talk 2019, Lausanne.

Organised by the CSEM

Agenda and some definitions

- Motivation
- Issues
- Examples of EH
 - Some EH techniques that will be used in IoT in the coming years.
 Amanda (H2020 project)
- Some (simplified) definitions:
 - LPWAN. Long range wireless systems. Will normally cover a wide area. Low data rate.
 - ALOHA. Random access of communication channel. Collisions problems. More nodes, more collisions.
 - EH (Energy Harvesting) Conversion of energy from one form (mechanical, thermal, light, RF...) to electrical energy in order to power the electronics. The primary energy form depends on the application context.
 - TEG (ThermoElectric Generator). Need temperature differences




Motivation

- What are we dealing with in this talk?
 - The loT chain has many elements
 - Our focus: "Long Range Wireless Nodes"

- According to Market Intelligence: millions of IoT nodes in the future
- Some potential problems:
 - Installation, reliability, power
- Some applications are held back by some of these issues
 - It is important to consider them and their impact on the future of IoT

Issues

Traffic jam/data loss in unlicensed band?

- ALOHA limits. Collisions affect throughput
- low-cost, but reliability issues
- Limited downlink (DL) resources
- Various methods help, but is that enough for the millions of nodes?

https://edtimes.in/heres-how-delhi-police-plans-to-make-delhi-traffic-jam-free-by-2020/

https://www.michiganradio.org/post/recycling-typical-household-battery-not-easy-you-might-think

Powering millions of IoT nodes

- Mains? mobility + cable problems
- Batteries? Not always good
 - Replacement/maintenance costs
 - Ecological issues / temperatures

28.05.2019 Marcel Meli, ZHAW-InES. Wireless Tech Talk, Lausanne 2019

Application

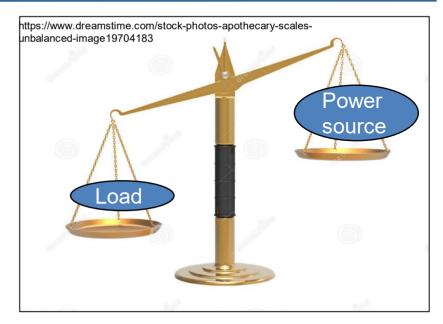
Internet

infrastructure

IoT Servers

Issues: balance and low-power design

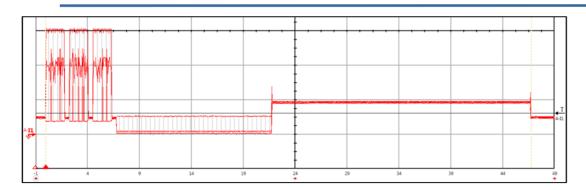
Energy harvesting can help. No batteries to replace!

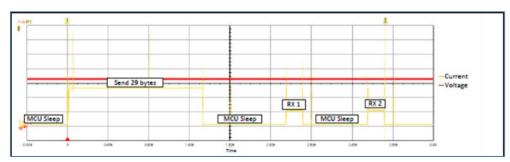

- Need appropriate elements:
 - source, harvester, electronics, storage

Energy problems when balance is lost

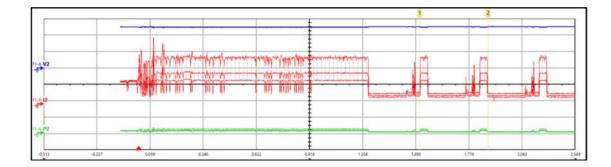
- Load needs more energy than is available
- Some factors
 - Energy needed by the load
 - Effects of leakages, ageing

Compromises needed (must first work)


- Range/payload → more energy
- Complexity affects transceiver costs
 - Sigfox: 3 frames → better reliability but more energy
 - LoRa: High SF → better range but more time and energy

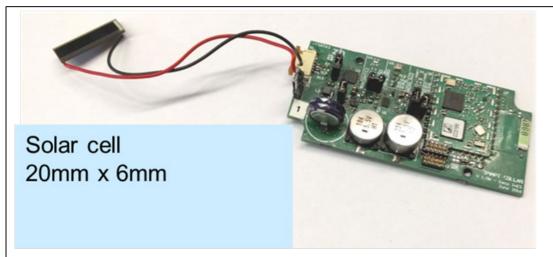


Issues: an idea about load requirements



Energy for Sigfox. @3.3 V, 6 bytes payload, ST S2-LP TRX
Each Tx costs about 117mJ. Rx window is long. Costs >700mJ if needed
1 frame 3x → more than 300 mJ

Energy for LoRa. @3.3 V, Sx1276 transceiver + micro bytes payload, 193 mJ (startup, Tx, Rx1, Rx2)

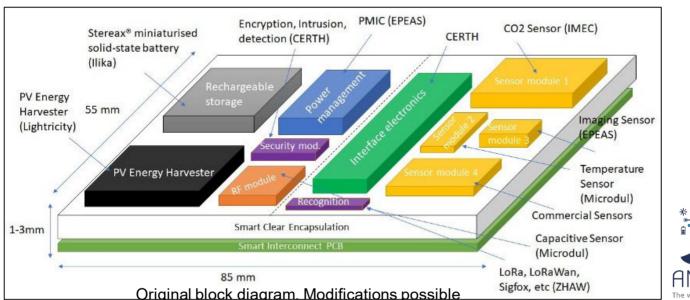

Energy for Nb-IoT. nRF9160.

- Energy of similar order as LoRa
- **More data** (higher data rate)
- Current peaks very high → no so good for small batteries
- Active Tx current (+23 dBm) > 250 mA (peaks of 380 mA)

Some EH possibilities

- Costs might be an issue (in general, less energy → lower costs)
 - With careful low power design, LEDs, Photodiodes, Small solar cells could be used
 - Printed batteries on IoT (Wearables) are also possible.

ZHAW-InES: LoRa node powered using small solar cell Tens of frames sent per day, depending of luminosity


ZHAW-InES: BLE node powered using LEDs as harvesters

EH: Amanda project (January 2019 – December 2021)

Amanda is a H2020 (EU) funded project (Research and Innovation Action)

- Autonomous self powered miniaturized intelligent environmental sensing and asset tracking in smart IoT environments
- Smart card format. Seeks to bring EH (photovoltaic) to IoT for different applications
- Energy harvesting, sensing, short/long range wireless, security, positioning, ...

The AMANDA project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No. 825464

Trees as energy source?

Several IoT applications require nodes to be outdoors

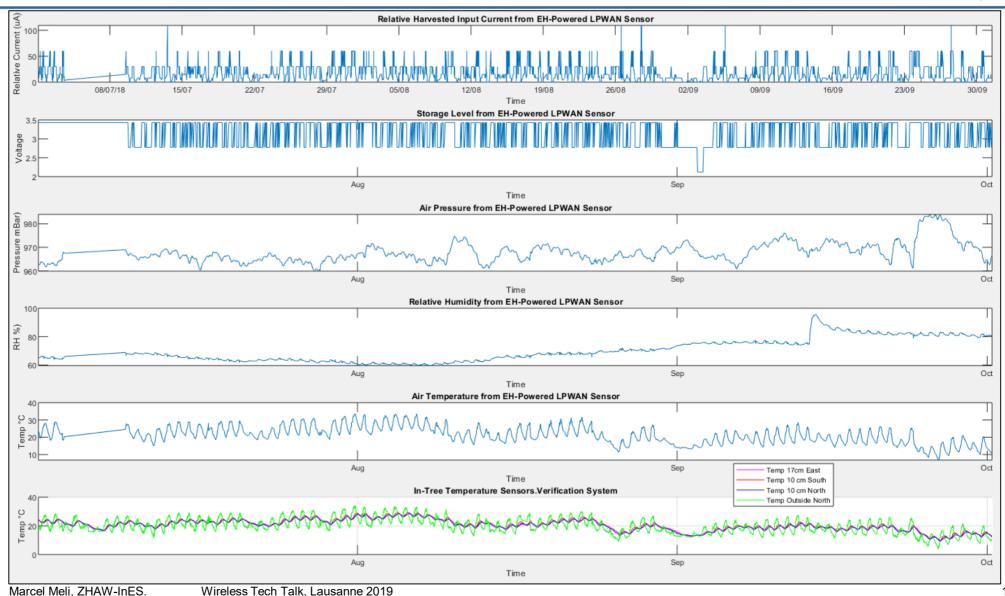
- Smart cities, Agriculture. Other applications are waiting to follow
- Trees in several places. Could this be a future energy source?

We are investigating the use of trees to power IoT nodes

- How? Temperature differences Tree/Air surrounding the tree
 - Day-night cycle → changes in ambient temperature
 - Low-power node with long range radio designed and fitted on tree
 - The node is totally energy autonomous. Measures P, RH, T
 - For control, a system powered with batteries measures some parameters

First results are good

- The system has been active for more than a year.
- Works well all seasons .Less energy in winter (when there is fog?)



ZHAW-InES: IoT node powered by EH from tree.

Verification system powered by batteries

Harvesting energy from trees. Some results (Jul-Sep 2018)

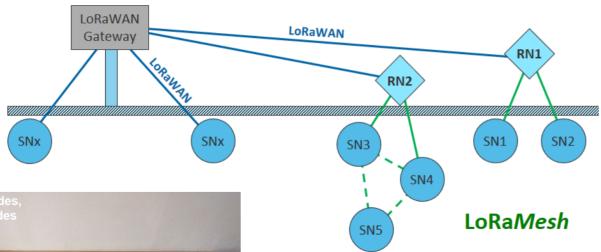
Some EH possibilities

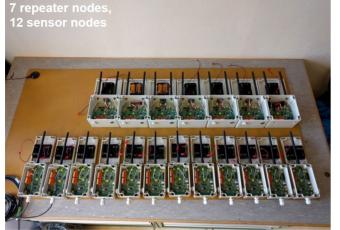
But you do not always have trees

- IoT nodes here? Or in a similar place?
- Very hot/cold → not so good for batteries
- Dig!! Not to plant trees, not for oil

Dig for energy

- Temperature differences between soil and air
 - Harvest small amount of electrical energy
 - Low power design is crucial
- We are using that method to power IoT nodes
 - Results are good
 - The system has been active in rain, snow, sunshine ...


LoRaMesh Field Tests



"Digitales Feldlabor Fehraltorf"

Providing access to previously unreachable sensor nodes

Synchronous LoRa Mesh Network to Monitor Processes in Underground Infrastructure

https://doi.org/10.1109/ACCESS.2019.2913985

Autonomous and Distributed Architecture for Water Infrastructure Monitoring

- Shows that IoT in difficult environment (such as water infrastructure) is possible.
- Above ground and Underground nodes. Man holes, Etc
- Wireless communication and energy harvesting

Press Release and Youtube video

Marcel Meli, ZHAW-InES.

https://www.zhaw.ch/de/medien/medienmitteilungen/detailansicht-medienmitteilung/news-single/selbstversorgende-sensoren-spueren-wasserlecks-

<u>auf/</u>

What else are we doing in IoT? Several things

radio bursts need to be collision free

against interference

This reduces the collision probability of telegrams and increases the resilience

- LPWAN: Work related to existing systems (LoRa, Sigfox, NB-IoT, ... etc
 - More Energy Harvesting
 - Use of printed batteries with Long Range Wireless (e.g. for wearables)
 - Working on a solution to improve the downlink
 - Virtually inexistent for Sigfox, very asymmetric for LoRaWAN
 - Potential to further reduce energy requirements and/or improve reliability

Looking into other wireless systems

- e.g. MIOTY (Fraunhofer IIS)
 - Telegram Splitting
 - https://behrtech.com/

Telegram Splitting Multiple Access The Concept Telegram Splitting Telegram Splitting (TS) divides a compact telegram transmission into S equally sized radio bursts For Multiple Access (MA) the radio bursts are distributed over time and frequency For correct decoding only 50% of the

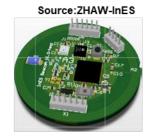
 $\mathsf{Time} \to$

28.05.2019 Marcel Meli, ZHAW-InES. Wireless Tech Talk, Lausanne 2019

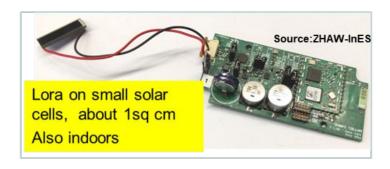
Radio bursts

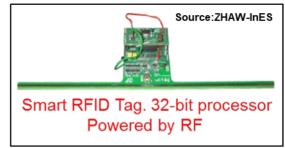
Conclusions

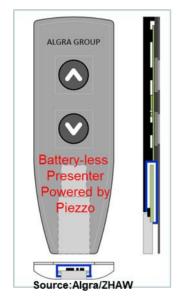
15

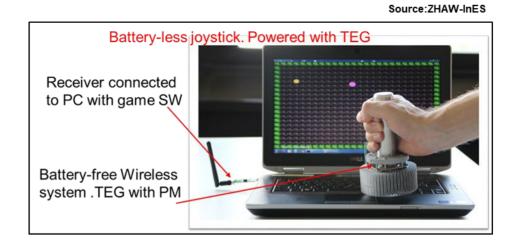

- Energy Harvesting is becoming a viable way of powering IoT networks
 - Works with several types of wireless systems
 - Optimisation needed on load side and on EH side
- Reliability of Long Range wireless system is being improved
 - Also for systems in unlicensed bands
 - There are new systems coming
- More applications will profit from those improvements
- New applications will surface
- ZHAW-InES is working towards those goals
- contact
 - marcel.meli@zhaw.ch
 - https://www.zhaw.ch/en/engineering/institutes-centres/ines/low-power-wireless-embeddedsystems/

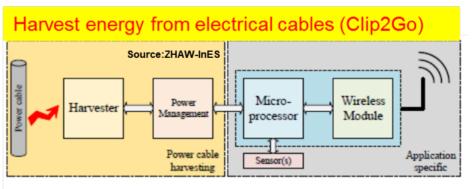
Other examples of our work in low-power and EH

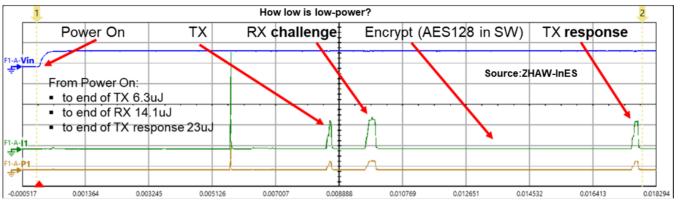



16


Diversity of energy sources: mains, batteries, piezo, solar, heat, RF, electrodynamic, printed batteries, ... **Diversity of wireless systems:** Bluetooth Smart, RFID, 802.15.4, ZigBee, proprietary, Sigfox,LoRa, Nb-loT... **Diversity of microcontrollers:** state machines, 8-bit, 16-bit, 32-bit, asynchronous, ...


BLE sensor with NFC and optical pairing


Other examples of our work in low-power and EH


17

Total of about 23uJ needed for Challenge Response wireless communication at 2v, Tx power=0dBm