Photovoltaic for miniature IoT devices

Lightricity Ltd

Speaker: Dr Julien Campos

Position: Lead Technologist

AMANDA PROJECT

2nd Webinar

7th December 2021

Company introduction

- Lightricity Ltd is a spin-out from SHARP Laboratories of Europe Ltd, SHARP's European R&D lab
- Established after 4 years of intensive R&D on Energy Harvesting (EH) and IoT devices, Lightricity aims to commercialize its unique IP-protected indoor Photovoltaic (PV) technology

Small PV size
-- cm² range --

Lightricity offers sustainable, environmentally friendly PV Energy Harvesting components and systems that eliminate the need for battery replacements of IoT devices and sensors inside buildings

Problem and solution

Problem: Billions of wireless smart IoT devices currently requiring primary batteries or wires

- > Big issue with extra-maintenance: >100 million battery replacements per day required in the near future
- > Huge cost and environmental impact (waste) currently limiting the deployment of IoT devices in the field

Required Battery Replacements per Day						
	Number of Assets Monitored					
		10 B	20 B	50 B	100 B	○1T
Battery Lifetime (Years)	1	27 M	55 M	137 M	274 M	2,740 M
	2	14 M	27 M	68 M	137 M	1,370 M
	3	9 M	18 M	46 M	91 M	913 M
	5	5 M	11 M	27 M	55 M	548 M
	10	3 M	5 M	14 M	27 M	274 M

Opportunity: Overall demand increasing but currently no acceptable solution available in the market

Solution: **Lightricity** can provide a sustainable, affordable, scalable and efficient solution to power the current and future generation of ultra-low power, miniaturised IoT sensors and devices

Value proposition

- **Lightricity** Energy Harvesting component **is 6x more efficient per area than existing products**, aesthetically more attractive, has ultra-long lifetime (>20 years expected) and is easier to integrate (higher voltage output)
- Can be used as an efficient Energy Harvesting solution to power IoT devices otherwise requiring batteries

At 1000 lux average illumination (bright indoor conditions), over 10 years:

Over the 10 years of a typical product's lifetime, Lightricity Energy Harvester can save €100's of maintenance and operational cost compared to conventional battery solutions

Key environmental benefits:

Eliminate the considerable economic and environmental (~€1.2k per tonne) costs of battery disposal due to the
proliferation of IoT devices (Statista: 75.4bn devices by 2025) + sensor disposal costs.
 Encourage re-use and recycling model, achieving a hazardous waste reduction near 100% (no use of heavy
metals)

Technology features: ExCellLight

Lightricity vs. existing Energy Harvesting technologies

World's best indoor Photovoltaic solution based on a high purity / ultra-long lifetime (>20 years) inorganic material

Test performed under Fluorescent and white LED spectra at 200 lux. 30-35% PV cell efficiency achieved indoors!

Main competing technology currently amorphous Silicon with:

- Low performance (especially under low light level)
- Poor aesthetics (brownish and non-uniform color)
- Cumbersome: relatively large sizes, wires for electrical connections

Lighting Conditions				
Environment	Typical lux Value			
Dim corridor	50-100			
Restroom	100-300			
Homes	200-400			
Office – Open	300-500			
Kitchen	300-750			
Hypermarket / Factories	1000			
Outside under tree shading	3000-10000			
Bright sunlight	>100000			

Amorphous Silicon indoor PV panel (conventional)

Integration with IoT sensors

Industrial asset tracking and monitoring: SBRI UK

- Lightricity is leading a SBRI-funded project (>£1m) that includes Sony and the NHS hospitals
- This project aims to demonstrate PV-powered networks of beacons/trackers that enable the location and monitoring of valuable assets in hospitals, logistics and retail
- This includes wireless temperature monitoring in ultra-cold conditions (fridges and freezers)
- Devices should withstand harsh cleaning conditions (sterilisation, cleaning agents) and environmental conditions (dirt, etc)

Product prototype line-up

		ExCellLight EXL10-4V170	ExCellLight EXL2-1V50	ExCellLight Custom EXLC-X	4EverLast 1.0 EVL10-4V150
	View				EH Power Module
	Integration	Stand-alone	Stand-alone	Stand-alone	Added electronics
	Shape	Rectangular	Rectangular	Custom	Rectangular
	Size	$5.0 \times 2.0 \times 0.15 \text{ cm}^3$	$2.4 \times 1.0 \times 0.15 \text{ cm}^3$	Custom	6.0 x 2.0 x 1.0 cm ³
	PV active area	7.8 cm ²	2.15 cm ²	Custom (mm ² – cm ²)	7.8 cm ²
	Voltage output (MPP @ 200 lux)	4V	1V	Custom (1V, 2V, 3V, 4V, 5V)	4V
1	Power output (MPP @ 200 lux)	170 μW	47.6 μW	Custom	150 μW (500 mW peak)

Product prototype line-up (new)

	ExCellLight EXL1-1V20	ExCellLight EXL0.25-3V5	ExCellLight EXL0.10-3V2	4EverLast 2.0 EVL1/2-1V20/40
View	ш			2478753A_Y22
Integration	Stand-alone	Stand-alone	Stand-alone	Added electronics
Shape	Rectangular	Square	Square	Rectangular
Size	11.65 x 8.85 x 0.65 mm ³	5.0 x 5.0 x 0.65 mm ³	$3.5 \times 3.5 \times 0.65 \text{ mm}^3$	27 x 32 x 3.0 mm ³
PV active area	98 mm²	22 mm ²	9.9 mm ²	10-34 mm²
Voltage output (MPP @ 200 lux)	1V	3V	3V	1.8V, 3V or configurable
Power output (MPP @ 200 lux)	21.7 μW	4.9 μW	2.2 μW	Up to 50 μW (100 mW peak)

Summary of features and benefits

- Eco-friendly "fit and forget" products (avoid primary Lithium batteries)
- Highest PV performance and reliability on the market, over a wide illumination range (10-100 000 lux)
- Enable new functionalities or reduce PV footprint, next generation of self-powered IoT devices
- Superior aesthetics that can boost brand visibility
- Unique customization available (shape, size, thickness, output configuration) to fit in any IoT product
- ♦ Ultra-small form factor possible for seamless integration
- ❖ Robust, even in harsh environments (elevated temperature up to 150 °C)
- ♦ Easily scalable (supply-chain already in place for mass production)

THANK YOU!

Technical enquiries: *info@lightricity.co.uk*

Commercial enquiries: sales@lightricity.co.uk

Website: www.lightricity.co.uk

