
An Encryption Scheme using Dynamic Keys and
Stream Ciphers for Embedded Devices

Chrysoula Oikonomou
Information Technologies Institute

Thessaloniki, Greece
chrisaoikon@iti.gr

Charalampos S Kouzinopoulos
Information Technologies Institute

Thessaloniki, Greece
kouzinopoulos@iti.gr

Dimosthenis Ioannidis
Information Technologies Institute

Thessaloniki, Greece
djoannid@iti.gr

Dimitrios Tzovaras
Information Technologies Institute

Thessaloniki, Greece
Dimitrios.Tzovaras@iti.gr

Abstract—Security in embedded devices can be challenging, due
to limited available resources, including processing power, mem-
ory and energy autonomy. Embedded security solutions should
have a low computational complexity and minimum memory
requirements, while at the same time these must not reflect in
the mechanism’s efficiency. This paper describes a lightweight
scheme for Data in Transit Encryption (DiTE) using dynamic
keys, designed for embedded devices. The scheme is based on
the RC4 and ChaCha ciphers and uses communication channel
characteristics, and especially the RSSi, to generate the encryption
keys. The proposed algorithm provides an enhanced security
level, due to the non static encryption keys, in both physical and
transport level.

Index Terms—cybersecurity, encryption, embedded,
lightweight, dynamic key

I. INTRODUCTION

The number of smart devices that are connected through the
Internet has significantly increased over the past decade, due
to the emergence of the IoT paradigm. According to Cisco
[1], IoT devices will account for 50% (14.7 billion) of all
global networked devices by 2023. Edge nodes and embedded
devices in IoT are often targeted by malicious users, as they
may constitute an intermediate node to a wider system, or
be a source of valuable information. Hence, protecting the
information exchanged between embedded devices is a crucial
step towards privacy preservation and system security.

There is already a variety of encryption algorithms avail-
able, however there is significant research on the design of
lightweight algorithms that utilise efficiently the restrained
capabilities of embedded devices. This paper introduces a
lightweight encryption scheme for embedded systems that
combines dynamic key generation, based on the physical
layer characteristics, in combination with a stream cipher.
The scheme is evaluated with four different stream cipher
encryption algorithms, to determine the optimal one in terms
of energy consumption and latency induced. The proposed
encryption scheme provides enhanced security due to the key’s
dynamic nature. The scheme has been tested on an autonomous
embedded system for environmental sensing and asset tracking

in smart IoT environments. The implementation evaluation
showed low RAM requirements.

The rest of the paper is arranged as follows: Section II
describes related work on encryption algorithms for embedded
devices. In Section III, a detailed analysis of the proposed
encryption scheme is given, while Section IV discusses the cost
of the schema implementation, in terms of energy consumption
and latency. Finally, the conclusions of this work as well as
discussion on future work are presented in Section V.

II. RELATED WORK

Research in the design of lightweight encryption algorithms
generally focuses on the reduction of their computational cost
while also maintaining a high level of security. ALE [2] is
an online, single-pass, nonce-based authenticated encryption
technique with associated data support as an option. A nonce is
defined as a random or pseudo-random number that is required
by the encryption process, that can only be used once. Plain-text
lengths of up to 245 bytes are supported. Authenticated Stream-
Cipher (ASC) [3] has a similar overall structure to ALE. The
AES-NI assembly instruction set is used due to its improved
security and performance.

JAMBU, a lightweight block cipher based on the AES-128
algorithm and the SIMON block cipher, is introduced in [4].
The cipher, that uses a nonce-based key and XOR operations, is
efficient in terms of power consumption. If there is any misuse
of nonce, namely in the case it is used multiple times, the
Ciphertext feedback (CFB) [5] algorithm can be used. CFB
can be implemented in devices with limited processing power
and memory capabilities, including RFID devices. It is based
on the Compact Low-Overhead CFB (CLOC) algorithm [6] but
with a reduced computational complexity.

A cipher scheme is presented in [7], based on Physical
Layer Security (PLS). PLS schemes use the temporary and
random characteristics of a wireless communication channel to
transform the encryption into a dynamic process. Namely, the
generation of the key used for encryption in such schemes is
directly linked to temporary channel characteristics, and thus it
does not stay static over time. At the same time, no assumption



needs to be made for the end devices, as the physical layer
is shared to any kind of device. Therefore, such schemes are
suitable for any device with wireless communication capabili-
ties. The scheme includes a secret key which is calculated by
both endpoints of a communication link, using an estimation
of the Channel State Information (CSI). The drawback of this
algorithm lays on the fact that CSI information can also be
obtained by a malicious user that can potentially estimate the
channel properties of the communication. This was addressed
in [8], by encrypting the preamble of network packets. The
preamble has a length of 56 bits and allows communicating
devices to synchronise their receiver clocks, providing bit-level
synchronisation.

III. PROPOSED DITE DESIGN

A. Stream Ciphers and Reused Key attacks

Stream Ciphers are encryption algorithms used to encrypt
data by combining it with a keystream. During the encryption
process, the plaintext is being processed on a digit by digit
basis, along with the corresponding digits of the keystream,
in order to produce the encrypted sequence. To combine
the keystream and the plaintext data, an XOR operation is
frequently used. Stream ciphers are more efficient than other
types of ciphers, such as block ciphers, in terms of execution
time and hardware complexity, however they are vulnerable to
attacks known as Reused Key attacks. Such attacks are based
in the use of the same encryption key more than once. In that
case, an attacker may retrieve the plaintext information due to
the commutative property of the XOR operation. In order to
address this threat, an input that can not be predicted due to its
(pseudo)random nature is added to provide the initial state of
the cipher, known as Initial Vector (IV).

The stream ciphers evaluated in the context of this paper’s
implementation are the ChaCha [11] HC-128 [12], Rabbit [13]
and RC4 [14] ciphers. The selection of these algorithms was
based on their minimal requirements in terms of memory and
processing power. All of the above work by generating lengthy
key-stream sequences and appending them to data bytes. The
ciphers encrypt data by XORing it sequentially with key-
stream bytes. The first three algorithms use an IV during their
initialisation phase while the RC4 does not. Instead, the static
nature of the RC4 secret key is transformed by introducing
a nonce in the key generation process, derived by physical
channel characteristics. The rest of the algorithms are enhanced,
in terms of security, by the added nonce.

B. DiTE Scheme

The DiTE scheme is used to encrypt network packets. The
process begins after the message to be sent is formed into a
structured network packet, the input frame. Each input frame
is divided into three parts:

• Public information
• Frame preamble
• Actual data frame

The first part is kept in plain-text while the second and third
parts are encrypted in phases L2 and L3 of the scheme. A
visualisation of the DiTE scheme is presented in Fig. 1

Fig. 1. Key Generation and Encryption Scheme

The proposed scheme has three phases of execution. The
first one, L1, is the key generation process, which requires a
secret key and a nonce. The secret key is stored encrypted in
the memory of the low-power platform and is shared among
the trusted devices of the network, while the nonce is produced
using the channel characteristics. It is important to note that the
same nonce is required by both ends of the communication,
so a high level of synchronisation is required between them
to produce the exact same nonce. For the nonce generation,
the Received signal strength indication (RSSi) is used, which
measures the power in a received radio signal. Initially, RSSi is
transformed into a bit-stream and is subsequently hashed. After
obtaining both the secret key and the nonce, a XOR operation is
performed. Then, the result of the operation is hashed. For the
hash function, the SHA-512 key is used, therefore the hashed
value has a length of 512 bits. This is the dynamic key. The
dynamic key is then split into four parts of equal length (K1,
K2, K3, K4), with each part consisting of 128 bits.

However, if a key is solely derived from the communication
channel characteristics, it can be possible for an attacker to
calculate it. Thus, a lot of attention needs to be paid during
the key generation process to maintain the randomness of the
channel characteristics and add a certain complexity to the
formation of the keys. A further security measure that was taken
in order to address this weakness is the preamble encryption.
The preamble is utilised in the receiver to accomplish frequency
synchronisation, automatic gain control (AGC) training, and
symbol timing estimation. Thus, if such information is available
in plain text, attackers may be able to retrieve channel char-
acteristics that can lead to the encryption key. The preamble
encryption, or L2 phase, uses K1 and K2 as the required



TABLE I
LATENCY INDUCED FROM THE STREAM CIPHERS

Key Generation Encryption
ChaCha 512 µs 608 µs
HC-128 19712 µs 323 µs

RC4 1111 µs 190 µs
Rabbit 1763 µs 86 µs

Fig. 2. RC4 KSA

seed and IV to a stream cipher that encrypts the preamble. As
previously mentioned, three out of the four algorithms tested,
use both a seed and an IV. In these cases, K1 is used as the
seed-key while K2 is used as the IV. In the case of the RC4
cipher, K1 and K2 are concatenated to form the single key
required. The plaintext preamble is then encrypted with this
cipher.

Phase L3 includes the key generation process and the en-
cryption of the actual data needed to be transmitted, using
a variation of the RC4 algorithm. Sub-keys K3 and K4 are
utilised for the formation of the permutation tables p1 and
p2, that are used to generate the final permutation table p3.
the algorithm used to generate the permutation tables is the
Key-Scheduling Algorithm (KSA) of the RC4 stream cipher,
presented in Fig. 2. K is the secret key while N is the length
of the permutation table. p3 is generated using the algorithm
shown in Fig. 4. This algorithm also requires the use of a byte-
stream, that in the current context corresponds to 4. Finally, p3
is used to generate the keystream that is XORed with the actual
data using the Pseudo-Random Generator Algorithm (PRGA)
of RC4, as given in Fig. 3.

IV. IMPLEMENTATION AND RESOURCES REQUIREMENTS

The proposed encryption scheme of this paper is based on the
work presented in [9]. This paper presents an implementation of
the aforementioned work on a low-power platform and suggests
the use of the ChaCha stream cipher in the L2 phase of the
scheme. The platform used was the following characteristics.
The MCU of the system is based on the high-performance ARM
Cortex-M4 32-bit RISC core operating at a frequency of up
to 80MHz. The core features a floating-point single-precision
unit which supports all ARM single-precision data-processing
instructions and data types. It also has 1MB of Flash memory
and 320KB of SRAM.

Fig. 3. RC4 PRGA

Fig. 4. Permutation Table Update Algorithm

The procedure followed for both encryption and decryption
is similar. The first step includes the keys generation for
both the receiver and the transmitter. The information required
during this process is available to both of them, without the
need to exchange further data. The challenging point in this
step implementation was the RSSi calculation. The RSSi is
susceptible to multiple characteristics of the endpoints as well
as the environment. In order to maintain the RSSi stable during
the implementation, the following measures were taken to
ensure that there were no interference from the environment:

• No physical obstacles were present between the two
communicating devices

• The distance between the two communicating devices was
constant

• There were no other 802.11 sources that might cause radio
interference

After the keys have been obtained, a XOR operation is per-
formed for the encryption or the decryption of the plain/cipher
text. Hence the requirements are common for the transmitter
and the receiver.

Table I presents the latency that is induced by each of the
stream ciphers, used the for the preamble encryption. In order to
calculate the energy required for the code execution, specialised
hardware that enables the accurate calculation of the system
power consumption was used. During the execution time, a
total of 4.37KB RAM is used and 31.23KB of flash memory.



As far as the L1 phase is concerned, power consumption and
latency is the same for all cases and equal to 3.36µJ and
6458µs. The same is true for the L3 phase as well. The power
consumption for the key generation and encryption processes
in L3 are 3.07µJ and 0.06µJ , while latency is 5892µs and
106µs, respectively. Table II lists the power consumption for
the key generation and encryption processes executed in the L2
phase.

TABLE II
POWER CONSUMPTION OF EACH STREAM CIPHER

Key Generation Encryption
ChaCha 0.267 µJ 0.317 µJ
HC-128 10.27 µJ 0.168 µJ

RC4 0.919 µJ 0.0448 µJ
Rabbit 0.579 µJ 0.099 µJ

As can be seen, the HC-128 candidate was the first to be
eliminated as it required by far the biggest power consumption
in the key generation phase, followed by the RC4. The final
choice was based on the key generation requirements, as the
unstable nature of the RSSi which acts as the scheme nonce,
implies that the key generation process is executed more often
than in cases where the key is static. Hence the ChaCha
candidate was selected. The table III summarises the total costs
of the final proposed scheme.

V. CONCLUSIONS AND FUTURE WORK

The work presented in this paper details the implementation
of an encryption scheme, that uses dynamic keys based on the
temporary communication channel characteristics, and specifi-
cally the RSSi. The obtained RSSi is hashed with a secret key in
order to produce sub-keys that are used as input to the ciphers.
The scheme includes key generation and encryption processes
for both the dataframe and the preamble of the packet. The
dataframe encryption is performed using a variation of the
RC4 cipher while the preamble encryption, is performed with
the ChaCha cipher. The design is energy efficient and it is
proposed for energy and memory constrained devices. As a next
step, we plan to redesign the scheme using ChaCha and Rabbit
variations in the L3 encryption, in order to test if it can be
further optimised in terms of latency and power consumption.

ACKNOWLEDGEMENT

This work is co-funded by the European Union (EU) within
the AMANDA project under grant agreement number 825464.
The AMANDA project is part of the EU Framework Pro-
gramme for Research and Innovation Horizon 2020.

REFERENCES

[1] Cisco ”Cisco Annual Internet Report - Cisco Annual Internet
Report (2018–2023) White Paper”, Cisco, 2022. [Online].
Available: https://www.cisco.com/c/en/us/solutions/collateral/executive-
perspectives/annual-internet-report/white-paper-c11-741490.html.
[Accessed: 31- Jan- 2022].

[2] Bogdanov A., Mendel F., Regazzoni F., Rijmen V., Tischhauser E. (2014)
ALE: AES-Based Lightweight Authenticated Encryption. In: Moriai S.
(eds) Fast Software Encryption. FSE 2013. Lecture Notes in Computer Sci-
ence, vol 8424. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-
3-662-43933-3 23

TABLE III
LATENCY AND POWER CONSUMPTION OF THE FINAL SCHEME

Hashing
and
Sub-

keying

Preamble
Encryption

Data Encryption

Latency 6458 µs 512 µs + 608 µs 5892 µs + 106 µs
Power Cons. 3.36 µJ 0.267 µJ + 0.317 µJ 3.07 µJ + 0.06 µJ

[3] G. Jakimoski and S. Khajuria, “ASC-1: an authenticated encryption stream
cipher,” in 18th InternationalWorkshop on Selected Areas in Cryptography,
Toronto, 2011.

[4] H. Wu and T. Huang, “JAMBU Lightweight Authenticated
Encryption Mode and AES-JAMBU,” 2014. [Online]. Available:
https://competitions.cr.yp.to/round3/jambuv21.pdf.

[5] T. Iwata, K. Minematsu, J. Guo, S. Morioka and E. Kobayashi,
”SILC: SImple Lightweight CFB,” 2015. [Online]. Available:
https://competitions.cr.yp.to/round2/silcv2.pdf.

[6] T. Iwata, K. Minematsu, J. Guo and S. Morioka, ”CLOC:
Compact Low-Overhead CFB,” 2014. [Online]. Available:
http://competitions.cr.yp.to/round1/clocv1.pdf.

[7] J. M. Hamamreh and H. Arslan, ”Secure Orthogonal Transform Division
Multiplexing (OTDM) Waveform for 5G and Beyond,” 2014 IEEE Interna-
tional Conference on Communications Workshops (ICC), pp. 1191-1194,
2017.

[8] H. Rahbari and M. Krunz, ”Exploiting frame preamble waveforms to
Support New Physical-Layer Functions in OFDM-Based 802.11 Systems,”
EEE Transactions on Wireless Communications, pp. 3775-3786, June
2017.

[9] H. Noura, R. Melki, A. Chehab and M. Mansour, ”A Physical Encryp-
tion Scheme for Low-Power Wireless M2M Devices: a Dynamic Key
Approach”, Mobile Networks and Applications, vol. 24, no. 2, pp. 447-
463, 2018. Available: 10.1007/s11036-018-1151-7.

[10] ”Encyclopedia of Cryptography and Security”, 2011. Available:
10.1007/978-1-4419-5906-5 [Accessed 11 February 2022].

[11] Bernstein, Daniel J. ”ChaCha, a variant of Salsa20.” Workshop record of
SASC. Vol. 8. No. 1. 2008.

[12] Wu, Hongjun. ”The stream cipher HC-128.” New stream cipher designs.
Springer, Berlin, Heidelberg, 2008. 39-47.

[13] Boesgaard, Martin, et al. ”Rabbit: A new high-performance stream
cipher.” International workshop on fast software encryption. Springer,
Berlin, Heidelberg, 2003.

[14] Paul, Goutam, and Subhamoy Maitra. RC4 stream cipher and its variants.
CRC press, 2011.


